#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Simulation assignment 2024 - 2025 STARTER FILE """ import os import matplotlib.pyplot as plt import numpy as np import numpy.linalg as la import pandas as pd import scipy.stats as stats import statsmodels.api as sm #import varplot as vpl #plt.style.use("finthabo") # this imports all functions from the helper file from helper import data_frame_to_latex_table_file, print_question #colors = vpl.color_list() # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Start of Script for Simulation assignment Econometrics # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Set the folders for output of graphs and tables # ----------------------------------------------------------------------------- # for the figures FIGURE_DIR = "../figures/" if not os.path.exists(FIGURE_DIR): os.makedirs(FIGURE_DIR) # for the latex document REPORT_DIR = "../report/" if not os.path.exists(REPORT_DIR): os.makedirs(REPORT_DIR) # ----------------------------------------------------------------------------- # Here we set the seed for our group to your group number # ----------------------------------------------------------------------------- # first birthday bd_1 = 303 # second birthday bd_2 = 309 group_seed = bd_1 * bd_2 # set the seed np.random.seed(group_seed) # ----------------------------------------------------------------------------- # set the random number generator and seed # ----------------------------------------------------------------------------- # setting for output printing print_line_length = 90 print_line_start = 5 # ----------------------------------------------------------------------------- # Utility Functions for the Simulation # ----------------------------------------------------------------------------- def results_to_latex_table_file(file_name, results, beta): """ This function takes a results object from statsmodels and writes it to a latex table file. """ d = {'True': beta, 'Estimated': results.params, 'Std Err': results.bse, 't-Stat': results.tvalues} df = pd.DataFrame(data = d) data_frame_to_latex_table_file(REPORT_DIR + file_name, df) # ----------------------------------------------------------------------------- # 1.1 # ----------------------------------------------------------------------------- # the number of data sets that we will simulate num_obs = 1000 # set the seed and the random number generator for reproducible results # this ensures that every time you run this code you get exactly the same random numbers. # changing the seed would change the random numbers. rng = np.random.default_rng(group_seed) # the true value of the parameters. # Known in your role as creator, unknown to the modeller. beta = np.array([3.0, -4.0, 2.0]) # standard deviation of the error terms u = rng.normal(0, 3, (num_obs,)) x1 = rng.normal(3, 6, (num_obs,)) x2 = rng.normal(2, 5, (num_obs,)) # y y = beta[0] + beta[1]*x1 + beta[2]*x2 + u # plot the resulting data fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(x1, x2, y, marker='o') ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_zlabel('y') plt.savefig(FIGURE_DIR + "question_1_1.png") plt.show() # ----------------------------------------------------------------------------- # 1.2 # ----------------------------------------------------------------------------- # X X = np.array([np.ones(num_obs), x1, x2]).T # m m = sm.OLS(y, X) # results = results = m.fit() results_to_latex_table_file('table_1_2.tex', results, beta) # ----------------------------------------------------------------------------- # 1.3 # ----------------------------------------------------------------------------- # X X = np.array([np.ones(num_obs), x1]).T # m m = sm.OLS(y, X) # results = results = m.fit() results_to_latex_table_file('table_1_3.tex', results, beta[0:2]) # ----------------------------------------------------------------------------- # 1.4 # ----------------------------------------------------------------------------- x2_new = 0.5*x1 + rng.normal(5,4,(num_obs,)) y_new = beta[0] + beta[1]*x1 + beta[2]*x2_new + u # X X = np.array([np.ones(num_obs), x1, x2_new]).T # m m = sm.OLS(y_new, X) # results = results = m.fit() results_to_latex_table_file('table_1_4.tex', results, beta) # plot the resulting data fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(x1, x2_new, y_new, marker='o') ax.set_xlabel('x1') ax.set_ylabel('x2_new') ax.set_zlabel('y_new') plt.savefig(FIGURE_DIR + "question_1_4.png") plt.show() # ----------------------------------------------------------------------------- # 1.5 # ----------------------------------------------------------------------------- # X X = np.array([np.ones(num_obs), x1]).T # m m = sm.OLS(y_new, X) # results = results = m.fit() results_to_latex_table_file('table_1_5.tex', results, beta[0:2]) # ----------------------------------------------------------------------------- # 1.6 # ----------------------------------------------------------------------------- # x1 --> x1_new so we can compare to the original x1 from 1.2 x1_new = rng.normal(3, 1, (num_obs,)) y_new = beta[0] + beta[1]*x1_new + beta[2]*x2 + u # X X = np.array([np.ones(num_obs), x1_new, x2]).T # m m = sm.OLS(y_new, X) # results = results = m.fit() results_to_latex_table_file('table_1_6.tex', results, beta) fig = plt.figure() ax1 = fig.add_subplot(111) ax1.scatter(x1, y, c='b', marker="s", label='question 1.1') ax1.scatter(x1_new, y_new, c='r', marker="o", label='question 1.6') plt.legend(loc='upper left') plt.savefig(FIGURE_DIR + "question_1_6.png") plt.show()