added content
This commit is contained in:
parent
015d1e4651
commit
7351fd41cc
1 changed files with 18 additions and 10 deletions
|
@ -119,15 +119,18 @@ creates a page break.
|
||||||
|
|
||||||
\section{Simulation Study}
|
\section{Simulation Study}
|
||||||
|
|
||||||
\subsection{1.2: Linear Fit on Generated Data}
|
\subsection{Question 1.2}
|
||||||
|
Are the estimates of $\beta_0$, $\beta_1$ and $\beta_2$ close to their true values? Why (not)?
|
||||||
|
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
\input{table_1_2}
|
\input{table_1_2}
|
||||||
\caption{Linear Fit on Generated Data}
|
\caption{Linear Fit on Generated Data}
|
||||||
\label{tab::table_1_2}
|
\label{tab::table_1_2}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\subsection{1.3: Linear Fit with 1 Variable}
|
\subsection{Question 1.3}
|
||||||
|
Compare your estimates with those of question 1.2. Wich model do you choose? Discuss in terms of $\beta_1$ and model prediction.
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
\input{table_1_3}
|
\input{table_1_3}
|
||||||
|
@ -135,24 +138,29 @@ creates a page break.
|
||||||
\label{tab::table_1_3}
|
\label{tab::table_1_3}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\subsection{1.4: New Linear Fit on Generated Data}
|
\subsection{Question 1.4}
|
||||||
|
Do the results confirm what you would have expected to change in your estimation results compared to the results in question 1.2? Why (not)? How about the standard errors of the estimates of $\beta_1$ and $\beta_2$?
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
\input{table_1_4}
|
\input{table_1_4}
|
||||||
\caption{New Linear Fit on Generated Data}
|
\caption{New Linear Fit on Generated Data}
|
||||||
\label{tab::table_1_4}
|
\label{tab::table_1_4}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\subsection{1.5: New Linear Fit with 1 Variable}
|
\subsection{Question 1.5}
|
||||||
|
Are the OLS estimators for the slope coefficients biased? Why (not)?
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
\input{table_1_5}
|
\input{table_1_5}
|
||||||
\caption{Linear Fit with 1 Variable}
|
\caption{Linear Fit with 1 Variable}
|
||||||
\label{tab::table_1_5}
|
\label{tab::table_1_5}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\subsection{1.6: Generate Data with Small Variance on x1}
|
\subsection{Question 1.6}
|
||||||
|
Do the results confirm what you would have
|
||||||
|
expected to change in your estimation results compared to the results in question 1.2?
|
||||||
|
Why (not)? How about the standard errors of the estimates of $\beta_1$ ? Use the formula
|
||||||
|
Var$\beta_1$ to motivate your answer. What would happen if the standard deviation of x1
|
||||||
|
is equal to 0 instead of equals 1? Discuss in terms of the assumptions of the Multiple
|
||||||
|
Linear Regression mode.
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
\input{table_1_6}
|
\input{table_1_6}
|
||||||
\caption{Generate Data with Small Variance on x1}
|
\caption{Generate Data with Small Variance on x1}
|
||||||
|
|
Loading…
Reference in a new issue