question 2.3
This commit is contained in:
parent
9d8f09b035
commit
f5f4d1c3e6
4 changed files with 32 additions and 53 deletions
BIN
figures/question_2_2_lwage.png
Normal file
BIN
figures/question_2_2_lwage.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 8.5 KiB |
BIN
figures/question_2_2_wage.png
Normal file
BIN
figures/question_2_2_wage.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
|
@ -303,78 +303,45 @@ A \Rightarrow B
|
|||
|
||||
\subsection{Question 2.1}
|
||||
|
||||
For instance, here the file df\_table.tex is used print the actual numbers
|
||||
in the table.
|
||||
We retain 2510 observations.
|
||||
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\input{summary_stats}
|
||||
\caption{Generate Data with Small Variance on x1}
|
||||
\label{tab::table_2_1}
|
||||
\label{tab::summary_stats}
|
||||
\end{table}
|
||||
|
||||
|
||||
\subsection{Question 4: Some graphs}
|
||||
\subsection{Question 2.2}
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.6\paperwidth]{../figures/quadratic_model_y}
|
||||
\caption{This is a Figure coming straight from Python.}
|
||||
\label{fig::example_data}
|
||||
\includegraphics[width=0.6\paperwidth]{../figures/question_2_2_wage}
|
||||
\caption{Histogram wage}
|
||||
\label{fig::question_2_2_wage}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.6\paperwidth]{../figures/question_2_2_lwage}
|
||||
\caption{Histogram lwage}
|
||||
\label{fig::question_2_2_lwage}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Question 5}
|
||||
The lwage histogram in fig \ref{fig::question_2_2_lwage} is nicely centered so there is no need to remove any outliners. This is also close to a normal distribution. The wage historgam in fig \ref{fig::question_2_2_wage} is not symmetrical but is leaning to the left. Clealy not normal distributed.
|
||||
|
||||
Equation example with matrices:
|
||||
\subsection{Question 2.3}
|
||||
|
||||
\begin{equation}\label{eq::wald_test}
|
||||
H_0: \beta_1 = - \beta_2; \beta_3=0; \beta_2 + 2\beta_4 = 2
|
||||
\quad H_1: \neg H_0
|
||||
\end{equation}
|
||||
|
||||
can be written in matrix form as:
|
||||
\begin{equation}\label{eq::matrix_form}
|
||||
\begin{bmatrix}
|
||||
1 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 2
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
\beta_1 \\
|
||||
\beta_2 \\
|
||||
\beta_3 \\
|
||||
\beta_4
|
||||
\end{bmatrix} =
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
2
|
||||
\end{bmatrix}
|
||||
\end{equation}
|
||||
|
||||
In equation \eqref{eq::wald_test} we see that... and in equation \eqref{eq::matrix_form} we see that
|
||||
|
||||
\subsection{Question 6}
|
||||
|
||||
|
||||
$\beta$
|
||||
|
||||
\begin{table}
|
||||
\input{summary}
|
||||
\caption{This tables has the estimates summary}
|
||||
\label{tab::estimation_results_summary}
|
||||
\begin{table}[ht]
|
||||
\centering
|
||||
\input{table_2_3}
|
||||
\caption{Correlation matrix}
|
||||
\label{tab::table_2_3}
|
||||
\end{table}
|
||||
|
||||
Table \ref{tab::estimation_results_summary} has the full summary.
|
||||
We can see that there is a positive correlation between wage and school. It means that people who go longer to school will get a higher wage. There is a negative correlation between age and school. The younger generation is higher educated than older generation. Chinese citizens are better payed than malay, indian citizens have a negative correlation with wage.
|
||||
|
||||
\begin{table}
|
||||
\input{results_coef}
|
||||
\caption{This tables has the estimates summary}
|
||||
\label{tab::estimation_results_coef}
|
||||
\end{table}
|
||||
\subsection{Question 2.4}
|
||||
|
||||
Table \ref{tab::estimation_results_coef} has the only the coefficient
|
||||
results.
|
||||
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -99,6 +99,8 @@ data = data[data['paidwork']==1]
|
|||
data['school'] = data['yprim']+data['ysec']
|
||||
data['wage'] = np.exp(data['lwage'])
|
||||
data_summary = data.describe()
|
||||
new_names = ['count', 'mean', 'std', 'min', '25pct', '50pct', '75pct', 'max']
|
||||
data_summary.index = new_names
|
||||
|
||||
# print to screen
|
||||
print(data_summary.T)
|
||||
|
@ -113,6 +115,12 @@ data_frame_to_latex_table_file(report_dir + 'summary_stats.tex',
|
|||
|
||||
print_question('Question 2.2: Plot histogram wage / lwage')
|
||||
|
||||
plt.hist(data['wage'],bins=21)
|
||||
plt.savefig(figure_dir + "question_2_2_wage.png")
|
||||
plt.show()
|
||||
plt.hist(data['lwage'],bins=21)
|
||||
plt.savefig(figure_dir + "question_2_2_lwage.png")
|
||||
plt.show()
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Question 2.3
|
||||
|
@ -120,6 +128,10 @@ print_question('Question 2.2: Plot histogram wage / lwage')
|
|||
|
||||
print_question('Question 2.3: Sample correlations')
|
||||
|
||||
df = data [['wage', 'age', 'school', 'men', 'malay', 'chinese', 'indian']]
|
||||
corr = df.corr()
|
||||
data_frame_to_latex_table_file(report_dir + 'table_2_3.tex',
|
||||
corr)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Question 2.4
|
||||
|
|
Loading…
Reference in a new issue