206 lines
5.6 KiB
Python
206 lines
5.6 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Simulation assignment 2024 - 2025
|
|
|
|
STARTER FILE
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import numpy.linalg as la
|
|
import pandas as pd
|
|
import scipy.stats as stats
|
|
import statsmodels.api as sm
|
|
#import varplot as vpl
|
|
|
|
#plt.style.use("finthabo")
|
|
|
|
# this imports all functions from the helper file
|
|
from helper import data_frame_to_latex_table_file, print_question
|
|
|
|
#colors = vpl.color_list()
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# -----------------------------------------------------------------------------
|
|
# Start of Script for Simulation assignment Econometrics
|
|
# -----------------------------------------------------------------------------
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Set the folders for output of graphs and tables
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# for the figures
|
|
FIGURE_DIR = "../figures/"
|
|
if not os.path.exists(FIGURE_DIR):
|
|
os.makedirs(FIGURE_DIR)
|
|
# for the latex document
|
|
REPORT_DIR = "../report/"
|
|
if not os.path.exists(REPORT_DIR):
|
|
os.makedirs(REPORT_DIR)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Here we set the seed for our group to your group number
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# first birthday
|
|
bd_1 = 303
|
|
# second birthday
|
|
bd_2 = 309
|
|
|
|
group_seed = bd_1 * bd_2
|
|
|
|
# set the seed
|
|
np.random.seed(group_seed)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# set the random number generator and seed
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# setting for output printing
|
|
print_line_length = 90
|
|
print_line_start = 5
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Utility Functions for the Simulation
|
|
# -----------------------------------------------------------------------------
|
|
|
|
def results_to_latex_table_file(file_name, results, beta):
|
|
"""
|
|
This function takes a results object from statsmodels and writes it to a latex table file.
|
|
"""
|
|
d = {'True': beta,
|
|
'Estimated': results.params,
|
|
'Std Err': results.bse,
|
|
't-Stat': results.tvalues}
|
|
df = pd.DataFrame(data = d)
|
|
data_frame_to_latex_table_file(REPORT_DIR + file_name, df)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.1
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# the number of data sets that we will simulate
|
|
num_obs = 1000
|
|
|
|
# set the seed and the random number generator for reproducible results
|
|
# this ensures that every time you run this code you get exactly the same random numbers.
|
|
# changing the seed would change the random numbers.
|
|
rng = np.random.default_rng(group_seed)
|
|
|
|
# the true value of the parameters.
|
|
# Known in your role as creator, unknown to the modeller.
|
|
beta = np.array([3.0, -4.0, 2.0])
|
|
|
|
# standard deviation of the error terms
|
|
u = rng.normal(0, 3, (num_obs,))
|
|
|
|
x1 = rng.normal(3, 6, (num_obs,))
|
|
x2 = rng.normal(2, 5, (num_obs,))
|
|
|
|
# y
|
|
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
|
|
|
|
|
# plot the resulting data
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(projection='3d')
|
|
|
|
ax.scatter(x1, x2, y, marker='o')
|
|
|
|
ax.set_xlabel('x1')
|
|
ax.set_ylabel('x2')
|
|
ax.set_zlabel('y')
|
|
|
|
plt.savefig(FIGURE_DIR + "question_1_1.png")
|
|
plt.show()
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.2
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# X
|
|
X = np.array([np.ones(num_obs), x1, x2]).T
|
|
|
|
# m
|
|
m = sm.OLS(y, X)
|
|
# results =
|
|
results = m.fit()
|
|
results_to_latex_table_file('table_1_2.tex', results, beta)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.3
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# X
|
|
X = np.array([np.ones(num_obs), x1]).T
|
|
|
|
# m
|
|
m = sm.OLS(y, X)
|
|
# results =
|
|
results = m.fit()
|
|
results_to_latex_table_file('table_1_3.tex', results, beta[0:2])
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.4
|
|
# -----------------------------------------------------------------------------
|
|
|
|
x2_new = 0.5*x1 + rng.normal(5,4,(num_obs,))
|
|
|
|
y_new = beta[0] + beta[1]*x1 + beta[2]*x2_new + u
|
|
|
|
# X
|
|
X = np.array([np.ones(num_obs), x1, x2_new]).T
|
|
|
|
# m
|
|
m = sm.OLS(y_new, X)
|
|
# results =
|
|
results = m.fit()
|
|
results_to_latex_table_file('table_1_4.tex', results, beta)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.5
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# X
|
|
X = np.array([np.ones(num_obs), x1]).T
|
|
|
|
# m
|
|
m = sm.OLS(y_new, X)
|
|
# results =
|
|
results = m.fit()
|
|
results_to_latex_table_file('table_1_5.tex', results, beta[0:2])
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# 1.6
|
|
# -----------------------------------------------------------------------------
|
|
|
|
# x1 --> x1_new so we can compare to the original x1 from 1.2
|
|
x1_new = rng.normal(3, 1, (num_obs,))
|
|
y_new = beta[0] + beta[1]*x1_new + beta[2]*x2 + u
|
|
|
|
# X
|
|
X = np.array([np.ones(num_obs), x1_new, x2]).T
|
|
|
|
# m
|
|
m = sm.OLS(y_new, X)
|
|
# results =
|
|
results = m.fit()
|
|
results_to_latex_table_file('table_1_6.tex', results, beta)
|
|
|
|
fig = plt.figure()
|
|
ax1 = fig.add_subplot(111)
|
|
|
|
ax1.scatter(x1, y, c='b', marker="s", label='question 1.1')
|
|
ax1.scatter(x1_new, y_new, c='r', marker="o", label='question 1.6')
|
|
plt.legend(loc='upper left')
|
|
plt.savefig(FIGURE_DIR + "question_1_6.png")
|
|
plt.show()
|
|
|