refactored table generation and added figures
This commit is contained in:
parent
4419fa3b70
commit
faafcd53fa
2 changed files with 85 additions and 47 deletions
|
@ -38,6 +38,11 @@
|
||||||
\sectionfont{\color{report_main}}
|
\sectionfont{\color{report_main}}
|
||||||
\subsectionfont{\color{report_third}}
|
\subsectionfont{\color{report_third}}
|
||||||
|
|
||||||
|
%% Add pagebreak before each section
|
||||||
|
\let\oldsection\section
|
||||||
|
\renewcommand\section{\clearpage\oldsection}
|
||||||
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
% This is where the actual document starts
|
% This is where the actual document starts
|
||||||
%
|
%
|
||||||
|
@ -103,22 +108,31 @@ Hendrik Marcel W Tillemans\\
|
||||||
% You can just write text in here as you would in any other word processor.
|
% You can just write text in here as you would in any other word processor.
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
\section{Question 1}
|
|
||||||
|
|
||||||
This my answer to question 1.
|
|
||||||
|
|
||||||
\subsection{Example}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
creates a page break.
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
|
|
||||||
\section{Simulation Study}
|
\section{Simulation Study}
|
||||||
|
|
||||||
|
\subsection{1.1: Generate Simulation Data}
|
||||||
|
|
||||||
|
We investigate a linear model with noise
|
||||||
|
|
||||||
|
\[y=\beta_0 + \beta_1 x1 + \beta_2 x2 + u\]
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
\[x1 \sim \mathcal{N}(3,\,6)\]
|
||||||
|
\[x2 \sim \mathcal{N}(3,\,6)\]
|
||||||
|
\[u \sim \mathcal{N}(0,\,3)\]
|
||||||
|
|
||||||
|
In figure \ref{fig::plot_1_1} we have a 3D representation of the generated model.
|
||||||
|
|
||||||
|
\begin{figure}[hb]
|
||||||
|
\includegraphics[width=0.6\paperwidth]{../figures/question_1_1}
|
||||||
|
\caption{Generated points for Question 1.1.}
|
||||||
|
\label{fig::plot_1_1}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{1.2: Linear Fit on Generated Data}
|
\subsection{1.2: Linear Fit on Generated Data}
|
||||||
|
|
||||||
\begin{table}[h]
|
\begin{table}[h]
|
||||||
|
@ -159,6 +173,12 @@ creates a page break.
|
||||||
\label{tab::table_1_6}
|
\label{tab::table_1_6}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
\begin{figure}[hb]
|
||||||
|
\includegraphics[width=0.6\paperwidth]{../figures/question_1_6}
|
||||||
|
\caption{Generated points for Question 1.6.}
|
||||||
|
\label{fig::plot_1_6}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\section{examples}
|
\section{examples}
|
||||||
Some greek letters:
|
Some greek letters:
|
||||||
|
|
||||||
|
|
|
@ -65,6 +65,22 @@ np.random.seed(group_seed)
|
||||||
print_line_length = 90
|
print_line_length = 90
|
||||||
print_line_start = 5
|
print_line_start = 5
|
||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
# Utility Functions for the Simulation
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
def results_to_latex_table_file(file_name, results, beta):
|
||||||
|
"""
|
||||||
|
This function takes a results object from statsmodels and writes it to a latex table file.
|
||||||
|
"""
|
||||||
|
d = {'True': beta,
|
||||||
|
'Estimated': results.params,
|
||||||
|
'Std Err': results.bse,
|
||||||
|
't-Stat': results.tvalues}
|
||||||
|
df = pd.DataFrame(data = d)
|
||||||
|
data_frame_to_latex_table_file(REPORT_DIR + file_name, df)
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.1
|
# 1.1
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
@ -90,6 +106,21 @@ x2 = rng.normal(2, 5, (num_obs,))
|
||||||
# y
|
# y
|
||||||
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
||||||
|
|
||||||
|
|
||||||
|
# plot the resulting data
|
||||||
|
fig = plt.figure()
|
||||||
|
ax = fig.add_subplot(projection='3d')
|
||||||
|
|
||||||
|
ax.scatter(x1, x2, y, marker='o')
|
||||||
|
|
||||||
|
ax.set_xlabel('x1')
|
||||||
|
ax.set_ylabel('x2')
|
||||||
|
ax.set_zlabel('y')
|
||||||
|
|
||||||
|
plt.savefig(FIGURE_DIR + "question_1_1.png")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.2
|
# 1.2
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
@ -101,12 +132,7 @@ X = np.array([np.ones(num_obs), x1, x2]).T
|
||||||
m = sm.OLS(y, X)
|
m = sm.OLS(y, X)
|
||||||
# results =
|
# results =
|
||||||
results = m.fit()
|
results = m.fit()
|
||||||
d = {'True': beta,
|
results_to_latex_table_file('table_1_2.tex', results, beta)
|
||||||
'Estimated': results.params,
|
|
||||||
'Std Err': results.bse,
|
|
||||||
't-Stat': results.tvalues}
|
|
||||||
df = pd.DataFrame(data = d)
|
|
||||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_2.tex', df)
|
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.3
|
# 1.3
|
||||||
|
@ -119,12 +145,8 @@ X = np.array([np.ones(num_obs), x1]).T
|
||||||
m = sm.OLS(y, X)
|
m = sm.OLS(y, X)
|
||||||
# results =
|
# results =
|
||||||
results = m.fit()
|
results = m.fit()
|
||||||
d = {'True': beta[0:2],
|
results_to_latex_table_file('table_1_3.tex', results, beta[0:2])
|
||||||
'Estimated': results.params,
|
|
||||||
'Std Err': results.bse,
|
|
||||||
't-Stat': results.tvalues}
|
|
||||||
df = pd.DataFrame(data = d)
|
|
||||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_3.tex', df)
|
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.4
|
# 1.4
|
||||||
|
@ -141,12 +163,7 @@ X = np.array([np.ones(num_obs), x1, x2_new]).T
|
||||||
m = sm.OLS(y_new, X)
|
m = sm.OLS(y_new, X)
|
||||||
# results =
|
# results =
|
||||||
results = m.fit()
|
results = m.fit()
|
||||||
d = {'True': beta,
|
results_to_latex_table_file('table_1_4.tex', results, beta)
|
||||||
'Estimated': results.params,
|
|
||||||
'Std Err': results.bse,
|
|
||||||
't-Stat': results.tvalues}
|
|
||||||
df = pd.DataFrame(data = d)
|
|
||||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_4.tex', df)
|
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.5
|
# 1.5
|
||||||
|
@ -159,30 +176,31 @@ X = np.array([np.ones(num_obs), x1]).T
|
||||||
m = sm.OLS(y_new, X)
|
m = sm.OLS(y_new, X)
|
||||||
# results =
|
# results =
|
||||||
results = m.fit()
|
results = m.fit()
|
||||||
d = {'True': beta[0:2],
|
results_to_latex_table_file('table_1_5.tex', results, beta[0:2])
|
||||||
'Estimated': results.params,
|
|
||||||
'Std Err': results.bse,
|
|
||||||
't-Stat': results.tvalues}
|
|
||||||
df = pd.DataFrame(data = d)
|
|
||||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_5.tex', df)
|
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
# 1.6
|
# 1.6
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
x1 = rng.normal(3, 1, (num_obs,))
|
# x1 --> x1_new so we can compare to the original x1 from 1.2
|
||||||
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
x1_new = rng.normal(3, 1, (num_obs,))
|
||||||
|
y_new = beta[0] + beta[1]*x1_new + beta[2]*x2 + u
|
||||||
|
|
||||||
# X
|
# X
|
||||||
X = np.array([np.ones(num_obs), x1, x2]).T
|
X = np.array([np.ones(num_obs), x1_new, x2]).T
|
||||||
|
|
||||||
# m
|
# m
|
||||||
m = sm.OLS(y, X)
|
m = sm.OLS(y_new, X)
|
||||||
# results =
|
# results =
|
||||||
results = m.fit()
|
results = m.fit()
|
||||||
d = {'True': beta,
|
results_to_latex_table_file('table_1_6.tex', results, beta)
|
||||||
'Estimated': results.params,
|
|
||||||
'Std Err': results.bse,
|
fig = plt.figure()
|
||||||
't-Stat': results.tvalues}
|
ax1 = fig.add_subplot(111)
|
||||||
df = pd.DataFrame(data = d)
|
|
||||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_6.tex', df)
|
ax1.scatter(x1, y, c='b', marker="s", label='question 1.1')
|
||||||
|
ax1.scatter(x1_new, y_new, c='r', marker="o", label='question 1.6')
|
||||||
|
plt.legend(loc='upper left')
|
||||||
|
plt.savefig(FIGURE_DIR + "question_1_6.png")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue