refactored table generation and added figures
This commit is contained in:
parent
4419fa3b70
commit
faafcd53fa
2 changed files with 85 additions and 47 deletions
|
@ -38,6 +38,11 @@
|
|||
\sectionfont{\color{report_main}}
|
||||
\subsectionfont{\color{report_third}}
|
||||
|
||||
%% Add pagebreak before each section
|
||||
\let\oldsection\section
|
||||
\renewcommand\section{\clearpage\oldsection}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% This is where the actual document starts
|
||||
%
|
||||
|
@ -103,22 +108,31 @@ Hendrik Marcel W Tillemans\\
|
|||
% You can just write text in here as you would in any other word processor.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\section{Question 1}
|
||||
|
||||
This my answer to question 1.
|
||||
|
||||
\subsection{Example}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\pagebreak
|
||||
|
||||
creates a page break.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\section{Simulation Study}
|
||||
|
||||
\subsection{1.1: Generate Simulation Data}
|
||||
|
||||
We investigate a linear model with noise
|
||||
|
||||
\[y=\beta_0 + \beta_1 x1 + \beta_2 x2 + u\]
|
||||
|
||||
where
|
||||
|
||||
\[x1 \sim \mathcal{N}(3,\,6)\]
|
||||
\[x2 \sim \mathcal{N}(3,\,6)\]
|
||||
\[u \sim \mathcal{N}(0,\,3)\]
|
||||
|
||||
In figure \ref{fig::plot_1_1} we have a 3D representation of the generated model.
|
||||
|
||||
\begin{figure}[hb]
|
||||
\includegraphics[width=0.6\paperwidth]{../figures/question_1_1}
|
||||
\caption{Generated points for Question 1.1.}
|
||||
\label{fig::plot_1_1}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\subsection{1.2: Linear Fit on Generated Data}
|
||||
|
||||
\begin{table}[h]
|
||||
|
@ -159,6 +173,12 @@ creates a page break.
|
|||
\label{tab::table_1_6}
|
||||
\end{table}
|
||||
|
||||
\begin{figure}[hb]
|
||||
\includegraphics[width=0.6\paperwidth]{../figures/question_1_6}
|
||||
\caption{Generated points for Question 1.6.}
|
||||
\label{fig::plot_1_6}
|
||||
\end{figure}
|
||||
|
||||
\section{examples}
|
||||
Some greek letters:
|
||||
|
||||
|
|
|
@ -65,6 +65,22 @@ np.random.seed(group_seed)
|
|||
print_line_length = 90
|
||||
print_line_start = 5
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Utility Functions for the Simulation
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
def results_to_latex_table_file(file_name, results, beta):
|
||||
"""
|
||||
This function takes a results object from statsmodels and writes it to a latex table file.
|
||||
"""
|
||||
d = {'True': beta,
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + file_name, df)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.1
|
||||
# -----------------------------------------------------------------------------
|
||||
|
@ -90,6 +106,21 @@ x2 = rng.normal(2, 5, (num_obs,))
|
|||
# y
|
||||
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
||||
|
||||
|
||||
# plot the resulting data
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
|
||||
ax.scatter(x1, x2, y, marker='o')
|
||||
|
||||
ax.set_xlabel('x1')
|
||||
ax.set_ylabel('x2')
|
||||
ax.set_zlabel('y')
|
||||
|
||||
plt.savefig(FIGURE_DIR + "question_1_1.png")
|
||||
plt.show()
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.2
|
||||
# -----------------------------------------------------------------------------
|
||||
|
@ -101,12 +132,7 @@ X = np.array([np.ones(num_obs), x1, x2]).T
|
|||
m = sm.OLS(y, X)
|
||||
# results =
|
||||
results = m.fit()
|
||||
d = {'True': beta,
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_2.tex', df)
|
||||
results_to_latex_table_file('table_1_2.tex', results, beta)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.3
|
||||
|
@ -119,12 +145,8 @@ X = np.array([np.ones(num_obs), x1]).T
|
|||
m = sm.OLS(y, X)
|
||||
# results =
|
||||
results = m.fit()
|
||||
d = {'True': beta[0:2],
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_3.tex', df)
|
||||
results_to_latex_table_file('table_1_3.tex', results, beta[0:2])
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.4
|
||||
|
@ -141,12 +163,7 @@ X = np.array([np.ones(num_obs), x1, x2_new]).T
|
|||
m = sm.OLS(y_new, X)
|
||||
# results =
|
||||
results = m.fit()
|
||||
d = {'True': beta,
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_4.tex', df)
|
||||
results_to_latex_table_file('table_1_4.tex', results, beta)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.5
|
||||
|
@ -159,30 +176,31 @@ X = np.array([np.ones(num_obs), x1]).T
|
|||
m = sm.OLS(y_new, X)
|
||||
# results =
|
||||
results = m.fit()
|
||||
d = {'True': beta[0:2],
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_5.tex', df)
|
||||
results_to_latex_table_file('table_1_5.tex', results, beta[0:2])
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# 1.6
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
x1 = rng.normal(3, 1, (num_obs,))
|
||||
y = beta[0] + beta[1]*x1 + beta[2]*x2 + u
|
||||
# x1 --> x1_new so we can compare to the original x1 from 1.2
|
||||
x1_new = rng.normal(3, 1, (num_obs,))
|
||||
y_new = beta[0] + beta[1]*x1_new + beta[2]*x2 + u
|
||||
|
||||
# X
|
||||
X = np.array([np.ones(num_obs), x1, x2]).T
|
||||
X = np.array([np.ones(num_obs), x1_new, x2]).T
|
||||
|
||||
# m
|
||||
m = sm.OLS(y, X)
|
||||
m = sm.OLS(y_new, X)
|
||||
# results =
|
||||
results = m.fit()
|
||||
d = {'True': beta,
|
||||
'Estimated': results.params,
|
||||
'Std Err': results.bse,
|
||||
't-Stat': results.tvalues}
|
||||
df = pd.DataFrame(data = d)
|
||||
data_frame_to_latex_table_file(REPORT_DIR + 'table_1_6.tex', df)
|
||||
results_to_latex_table_file('table_1_6.tex', results, beta)
|
||||
|
||||
fig = plt.figure()
|
||||
ax1 = fig.add_subplot(111)
|
||||
|
||||
ax1.scatter(x1, y, c='b', marker="s", label='question 1.1')
|
||||
ax1.scatter(x1_new, y_new, c='r', marker="o", label='question 1.6')
|
||||
plt.legend(loc='upper left')
|
||||
plt.savefig(FIGURE_DIR + "question_1_6.png")
|
||||
plt.show()
|
||||
|
||||
|
|
Loading…
Reference in a new issue